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A fast, low memory cost, Krylov-space-based algorithm is proposed for the diagonalization of large
Hamiltonian matrices required in time-dependent Hartree–Fock~TDHF! and adiabatic
time-dependent density-functional theory~TDDFT! computations of electronic excitations. A
deflection procedure based on the symplectic structure of the TDHF equations is introduced and its
capability to find higher eigenmodes of the linearized TDHF operator for a given numerical
accuracy is demonstrated. The algorithm may be immediately applied to the formally-identical
adiabatic TDDFT equations. ©2000 American Institute of Physics.@S0021-9606~00!30425-1#
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I. INTRODUCTION

The prediction of photophysical and photochemical p
cesses in molecules requires accurate computations o
cited state surfaces.1,2 Excited-states computations are n
merically much more expensive compared to their grou
state counterparts. However, the first-principles modeling
excited state dynamics requires substantially reduced in
mation on the excited state many-electron wave functio
Keeping redundant information greatly increases the num
cal effort in standardab initio computations. It is, therefore
desirable to develop approaches aimed at the direct com
tation of relevant quantities, eliminating unnecessary inf
mation from the outset.3,4

The quantities of interest, i.e., excited-state adiab
surfaces and nonadiabatic coupling terms can be obta
from the purely electronic optical response functions cal
lated for different but fixed molecular geometries. Two a
proaches are widely used for the direct computation of
electronic response, while avoiding the explicit calculati
of excited states: the time-dependent variational princ
~TDVP!,5,6 and the time-dependent density-functional theo
~TDDFT!7–11 in the Kohn–Sham~KS! form.12,13 In both
cases one follows the dynamics of a certain reduced se
parameters representing the system driven by an exte
field. In the TDVP these parameters describe a trial ma
body wave function whereas in the TDDFT they describ
set of KS orbitals.

The time-dependent Hartree–Fock~TDHF! approach
provides a powerful tool for studying the optical response
conjugated molecules.14–16 The TDHF equations are base
on the TDVP where the trial wave functions belong to t
spaceM of single Slater determinants.5,15 Since the TDDFT
can be formulated as the dynamics of a single Slater de
minant based on the KS orbitals, the two approaches fol
the dynamics of a similar quantity: a single Slater deter
nant that can be unambiguously described by an idempo
360021-9606/2000/113(1)/36/8/$17.00
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single-electron density matrixr ~with r25r).17,18 The
TDHF and TDDFT yield different dynamical equations fo
r(t). A conceptual difference between the two is related
the interpretation ofr(t). In the TDHF,r(t) is viewed as
an approximation for the actual single-electron dens
matrix,5 whereas in the TDDFTr(t) is an auxiliary quantity
constrained to reproduce the correct electronic charge di
bution at all times.12,13 The TDDFT is formally exact. How-
ever, in practice it yields only approximate results since
act expressions for the exchange-correlation ene
Exc@n(r )# and the corresponding potentialvxc(r ,@n#) in the
KS scheme are not available. An advantage of the TD
approach is thatr(t) provides not only the electron charg
distribution but the optically-induced coherences~changes in
chemical bond order! as well. The latter have been shown
be essential for understanding optical properties of con
gated molecules and for the first-principles derivation
simple models for the photoinduced dynamics~e.g., the
Frenkel–exciton model!.16 A close resemblance between th
TDHF and the TDDFT~especially its adiabatic version! has
been established recently using a formulation of the KS d
sity functional theory~DFT! based on the density matrixr
rather than on the KS orbitals.6 This formal similarity makes
it possible to apply the same algorithm for solving the eq
tions for the optical response in both cases.

The computational bottleneck in applying the TDHF a
TDDFT to large molecules7,19 is the diagonalization of a
large (N2/4)3(N2/4) Hamiltonian matrixL, N being the
number of single-electron orbitals.15,20 This difficulty can be
overcome by applying fast Krylov-space algorithms for t
diagonalization of large matrices.21,22 The Krylov-space is
defined as the space spanned on the vectorsLnv0 with n
50,1,. . . ,N8, v0 being some initial vector. In this article w
discuss three types of Krylov-space based algorithms.
Lanczos algorithm computes effectively the lowest eige
value and the corresponding eigenvector of a large matri21
© 2000 American Institute of Physics
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Since the matricesL that need to be diagonalized in th
TDHF or adiabatic TDDFT approaches are non-Hermiti
the standard Lanczos algorithm is not applicable, and
oblique Lanczos algorithm~OLA! should be used.21 The sec-
ond, Davidson’s algorithm~DA!, finds several lowest-
frequency eigenmodes of the Hamiltonian matrices wh
appear in the TDHF and adiabatic TDDFT which are ‘‘He
mitian’’ with respect to an antisymmetric ‘‘scala
product.’’23–25A third method for computing the lowest fre
quency eigenmode of a large Hamiltonian matrix is based
the iterative density matrix spectral moments algorith
~IDSMA!.15,20 All three algorithms show;N2 scaling of
memory and;N3 of computational time, resulting from a
N3N matrix multiplications. However, the scaling prefa
tors are different. The Davidson type algorithms, especi
the recently improved versions,7,26,27 are extremely fast bu
memory-intensive, since one needs to keep all the prev
iterations for the eigenmodes throughout the iteration pro
dure. Consider for example the computation of the low
eigenmode of a matrix using the Davidson iteration in a 2
dimension Krylov space~default maximum dimension in th
GAUSSIAN 98!.26 To improve the accuracy we need to calc
late the 201st trial Krylov vector, which should be orthog
nal to all others. This requires the storing of all previous 2
vectors. On the other hand, to compute the 201st vecto
the oblique Lanczos procedure we only need the 200th
the 199th vectors: by orthogonalizing the 201st to the 20
and 199th, it automatically becomes orthogonal to all pre
ous vectors. We only need to keep in memory two vect
rather than 200. This is the memory advantage of Lanc
over Davidson’s. However, the Lanczos may require a 4
Krylov-space dimension to obtain an approximate eig
value with the same accuracy as Davidson’s in a 200 sp
dimension, Davidson’s algorithm thus converges faster
requires generally less computational effort than the obli
Lanczos.

The OLA is slower but much less memory consumi
compared to the Davidson algorithm. In addition it is n
stable for some initial vectorsv0 and it should be restarte
with a different value ofv0 once it diverges. The IDSMA is
stable, has low memory requirements, but is 2–4 tim
slower than the Lanczos. None of these three algorithm
therefore, a universal method of choice, and they could al
most suitable for specific applications.

In this article we extend the OLA and IDSMA to obta
a low memory cost algorithm for computing the lowest fe
eigenmodes. Since both algorithms converge to the low
eigenmode, the higher eigenmodes can be obtained su
sively by finding the lowest mode in the subspace orthogo
to that spanned by the lower modes already found. Our
vious applications of this orthogonalization procedure~using
the IDSMA and the TDHF equations! showed that the pro
cedure is unstable, leading to the accumulation of numer
error for the higher modes. To overcome this difficulty w
implement here a deflection procedure that involves the
tisymmetric ‘‘scalar product’’ ~known as the symplectic
structure!.5

Numerical applications are made for the TDHF, but o
results apply to the TDDFT as well. The oblique Lancz
,
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algorithm with the deflection procedure~OLA-D! will be
compared with the IDSMA with the orthogonalization pr
cedure~IDSMA-O!. We find the former to be superior. W
argue that this reflects the superiority of the deflection o
the orthogonalization method for the higher eigenvalu
rather than the advantages of the OLA compared to
IDSMA for the lowest mode.

This article is organized as follows. In Sec. II we intr
duce the deflection procedure. In Sec. III we review the l
ear problem that arises in solving the linearized TDHF eq
tions and briefly discuss the applicability of the Krylov
space-based algorithms. In Sec. IV we present numer
calculations for two molecules, the NC5H6

1 protonated Schiff
base, and poly~p-phenylene! vinylene ~PPV! with five phe-
nyl rings. Details of the implementation of the oblique Lan
zos algorithm to the linear TDHF problem are given in A
pendices A–C.

II. COMPUTING SEVERAL LOWEST EIGENMODES:
THE DEFLECTION PROCEDURE

In this section we describe the deflection procedure
computing several lowest eigenmodes of the Hamilton
matrix L. The calculation makes use of the symplectic stru
ture, defined as an antisymmetric scalar product in the sp
of the TDHF modes:5,15

^j,g&[Tr$g1@j,r̄ #%, ~2.1!

wherer̄ is the ground state single-electron density matrixL
is a J-Hermitian matrix: for two eigenmodesjm andjn of L
with eigenvaluesVmÞVn we havê jm ,jn&50. L also has a
property that if Ljn5Vnjn then Lj2n52Vnj2n where
j2n[jn

1 . This implies that once the lowest pair of eige
modesj1 ,j1

1 with V1.0 is found, one can try to work in
the subspace orthogonal toj61 and find the lowest eigen
mode there. This procedure is, however, numerically
stable.

The deflection procedure described below is stab
When applied to a Hamiltonian matrixL it can be formulated
as follows: Suppose we have found thej lowest eigenmodes
j61 ,j62 , . . . ,j6 j . We introduce the deflected operatorLd

Ldj[Lj1 (
v51

j

n$jn^j,jn&2jn
1^j,jn

1&%, ~2.2!

where the modesjn are normalized:̂ jn ,jn&51 for n.0.
The operatorLd has the same eigenmodes asL, however the
eigenvalues of j6n for v51, . . . ,j are shifted:
V6n

(d) 56(Vn1n). The next pair of eigenmodes ofL,
j6( j 11) , thus corresponds to the lowest pair ofLd , provided
n is large enough. This pair can be found by applying eith
the OLA or IDSMA to Ld .

Both the deflection and the orthogonalization metho
are based on the compatibility of the operatorL with the
symplectic structure.5 The fact that the former is stable an
the latter is not can be rationalized as follows. Consider fi
the orthogonalization method. Suppose we have found
lowest mode. To obtain the next mode, we try to work in t
subspace orthogonal to the first mode. By looking for t
lowest mode in this subspace~either IDSMA or Lanczos! we
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start to approach the next mode. However, because of
merical errors, the vector has some residual componen
the lowest mode and the iterative procedure eventually c
verges to the lowest mode. In practice we found a quasic
vergence: iterations lead to some neighborhood of the n
mode, the system stays in this neighborhood for a while
finally converges to the lowest mode. The accuracy of
next mode is therefore determined by the size of the qu
convergence region, and it decreases rapidly for hig
modes. In the deflection method, on the other hand, we
the lowest mode of an operator which has been defle
from the ‘‘correct’’ one. There are no convergence problem
since we are always searching for the lowest mode of
deflected operator. The higher modes are therefore fo
with about the same accuracy as the deflection operato
practice with machine precision. The superiority of the d
flection over the orthogonalization method is clearly dem
strated in Sec. IV.

III. KRYLOV SPACE ALGORITHMS FOR THE TDHF
EIGENVALUE PROBLEM

The TDHF equations of motion for the time-depende
single-electron density matrix15,5 lead to an eigenvalue prob
lem

L̂jn5Vnjn , ~3.1!

wherejn are electronic mode density matrices andVn are
optical transition frequencies. The Liouville operatorL̂ is
non-Hermitian (L̂ÞL̂†) and is defined by15,5

L̂j5@F,j#1@V~j!,r̄ #. ~3.2!

Here r̄ is the ground state density matrix, andF is a Fock
matrix of sizeN5Np1Nh . N is the total basis set size,Np

andNh are the numbers of particle~occupied! and hole~vir-
tual! orbitals. The particle and hole molecular orbitals a
eigenvectors of the Fock matrix, which is diagonal in t
basis of these orbitals and may be obtained using
Hartree–Fock iterative procedure.15 The Coulomb operatorV
obeys

~j,V~h!!5~V~j!,h!, ~3.3!

where the scalar product of two arbitrary matricesh andj is
defined as (j,h)[Tr(j†h).

The dimensionality of the Liouville spaceL is M5N2.
A physical subspaceLph of all matrices limited to only
particle–hole and hole–particle orbital pairs has dimensi
ality M252NpNh and is an invariant subspace of the ope
tor L̂.5 The electronic oscillators algebra developed in Re
reduces the number of variables to theLph subspace. For any
matrix j, the commutator@j,r̄ # belongs toLph, and the
double commutator@@j,r̄ #,r̄ # is a projector ontoLph. The
following relation also holds inLph:

~j,h![~@j,r̄ #,@h,r̄ # !, ~3.4!

and the operator adjoint toL̂ is

L̂†j5@j,F#1V~@j,r̄ # !. ~3.5!
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Using Eqs. ~3.3! and ~3.4! it is straightforward to prove
Hermiticity with respect to our scalar product, i.e
(L†j,h)[(j,L̂h).

The spectrum ofL̂ ~and L̂†) consists ofM2/2 pairs of
conjugated eigenvectors with eigenfrequencies6Vn . In-
deed, Eq.~3.1! is equivalent to

L̂ j̃n52Vnj̃n , ~3.6!

L̂†@jn ,r̄ #5Vn@j,r̄ #, ~3.7!

L̂†@ j̃n ,r̄ #52Vn@j̃n ,r̄ #. ~3.8!

Only the few lowest excited states are necessary to c
pute visible and UV electronic spectra.14,16 The Lanczos al-
gorithm is the method of choice for this purpose when
matrix is sparse. It is important to note that even though
matrix L̂ is, in general, not sparse, it shares one useful pr
erty with sparse matrices: the evaluation of its action on
vector does not require storing all matrix elements
memory, and can be readily done using Eq.~3.2!. We have
employed the following novel method for computing th
productL̂j. The part ofL̂ which contains the Fock matrix is
calculated in the Hartree–Fock molecular orbitals basis
which the Fock matrix is diagonal. However, the evaluati
of V(r) is carried out by convertingr into the atomic-orbital
basis, in whichV is sparse, and then transforming the resu
back to the molecular-orbital basis. We note that in t
IDSMA, which is also a sparse matrix method, bothF andV
are evaluated in the atomic orbital basis.

IV. NUMERICAL RESULTS

We have tested the deflection algorithm by applying it
two molecules, the NC5H6

1 protonated Schiff base and pol
~p-phenylene vinylene! ~PPV! with five phenyl rings. We
used the INDO/S Hamiltonian for our calculations, obtain
from theZINDO code.28–30

Figure 1 illustrates the near-exponential convergence
the oblique Lanczos algorithm with the number of iteratio
for PPV. We have plotted the difference between the ene
at a given iteration step and the converged energy va
(Vn)n2(Vn)` , vs the number of iterationsn. The two
curves pertain to the lowest mode and a higher mode
excitation.

The top panel of Fig. 2 shows the oscillator strengthf vs.
the energyV, obtained for the NC5H6

1 protonated Schiff
using OLA-D ~20 modes, dashed!, IDSMA-O ~15 modes for
each of the three polarization directions, dotted!, and a single
configuration interaction~SCI! calculation ~using all 256
modes, solid line!. The basis size for this molecule is 32. Th
three calculations virtually coincide. The middle panel sho
the relative difference between the OLA-D and the SCI c
culation, and the bottom panel depicts the relative differe
between the IDSMA-O and the SCI. The largest relative d
ferences occur in regions where the oscillator strength
close to zero. Both Krylov algorithms give equally good r
sults in this test case, and compare well with the SCI.

The PPV oligomer with five phenyl rings~basis size
174! has been computed using OLA-D~50 modes! and
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IDSMA-O ~9 modes for each of the three polarization dire
tions!. The results shown in the top and bottom panel of F
3, respectively, are very close for both algorithms for t
modes below 4 eV. However, for higher energies the OLA
code was able to resolve several closely-lying modes wh
were not resolved by the IDSMA-O. We attribute this prim

FIG. 1. Convergence of the oblique Lanczos algorithm for PPV.

FIG. 2. Top panel: Linear absorption spectrum for the protonated Sc
base; the solid, dashed, and dotted lines represent single-CI,~SCI!, OLA-D,
and IDSMA-O results, respectively; the three curves are almost indis
guishable. Middle panel: Relative difference between the OLA-D and
SCI results. Bottom panel: Relative difference between the IDSMA-O
the SCI results.
-
.

h
-

rily to the merits of the deflection compared with the o
thogonalization method. The CPU time in this calculation
the IDSMA-O was approximately 1 h for each of the three
runs, and 5.68 h for OLA-D at full accuracy~i.e., the algo-
rithm runs until the energy has converged to machine pr
sion, 14 digits!. Here and below, CPU timing results a
given using a single MIPS R10000 175 MHz processor o
250 MB RAM SGI Octane workstation.

The effect of reducing the accuracy of the obliq
Lanczos computation is investigated for the same PPV
gomer in Fig. 4. The solid curve repeats the results obtai
for full accuracy~machine precision!, which is identical with
the spectrum in the bottom panel of Fig. 3. The dashed
was obtained by terminating the calculation as soon
Vn2Vn21,1023 eV, wheren denotes the iteration step
The reduced accuracy calculation took 1.58 h, i.e., only 2
of the more accurate calculation. However, the figure sho
clear differences, particularly between 5–6 eV, where
have to resolve several closely-lying modes.

V. CONCLUSIONS

We have examined the oblique Lanczos21 and Iterative
DSMA algorithms15,20 for the non-Hermitian eigenvalue
problem that appears in the TDHF5 and TDDFT7 computa-
tions of electronic response functions. Although scaling
the overall memory and computational effort with syste
size is similar for these and analogous algorithms~e.g.,
Davidson’s23–25 and filter band31,32!, the nature of targeted
spectroscopic observables and available computationa
sources may make one of them preferable for a partic
application. To illustrate this point, let us compare the re
nant and static response in conjugated molecules.19,20 The
resonant response requires an accurate calculation of the
citation energies in the chosen frequency range. In this c

ff

-
e
d

FIG. 3. Linear absorption spectrum for PPV, obtained using the IDSMA
~top panel! and the OLA-D~bottom panel!.
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the OLA-D approach, that provides the eigenvalues a
eigenvectors of the Liouville operator with high precisio
should be preferable. On the other hand, the static resp
does not require accurate calculations of the excitation
quencies, but rather the transitions with strong dipole m
ments that contribute significantly to the polarizabilit
OLA-D computed eigenstates will help to calculate only
part of the response coming from the covered freque
range. The DSMA algorithm that divides the response fu
tion into several dominant effective contributions from t
whole spectrum should then be the method of choice.

Each diagonalization algorithm requires a separate p
cedure that excludes the already computed eigenmodes
the Krylov space when calculating the next eigenvector.
have demonstrated that the deflection procedure finds a s
lowest TDHF eigenmodes with more stability and accura
compared to the orthogonalization method. The compu
tions of electronic spectra focus on the low-frequency sp
tral range which can be effectively obtained using the defl
tion procedure. The OLA-D method allows the computati
of a few hundreds of low-frequency electronic transitions
large conjugated molecules covering pretty much the en
visible-UV spectrum~1–8 eV!.

Finally we note that the present article does not intend
demonstrate the largest system for which the oblique La
zos procedure my be applied. Our PPV5 calculations sim
demonstrate the comparison of OLA and DSMA. These c
culations have only minor time (,2 min/state! and memory
(,2 MB! requirements on an R10000 SGI workstation.

FIG. 4. OLA-D calculations for PPV, obtained with full accuracy~solid
line! and reduced accuracy, as explained, in the text~dashed line!.
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APPENDIX A: LANCZOS ALGORITHM FOR
HERMITIAN MATRICES

The Hermitian Lanczos algorithm finds a few lowest e
genvalues of a Hermitian matrixĤ by starting with an arbi-
trary vectorv0 and constructing linear combinations of ve
tors vm5Ĥmv0 , m50,1,. . . . Thecoefficients in the linear
combination of vm are found using the Ritz variationa
procedure21,22 which guarantees to yield the best approxim
tion to the lowest eigenvalue ofĤ that belongs to a Krylov
subspace. This subspace (Km) spanned by the vector

v0 . . . vm , approximates an invariant subspace ofĤ with
increasing accuracy as the number of vectors is increase

A simple recursive procedure allows building a set
orthogonal vectorswm that span the same Krylov subspac
Finding each new vectorwm11 only requires the two previ-
ous vectorswm andwm21:22

wm115bm11
21 ~Ĥwm2amwm2bmwm21!. ~A1!

At each stepm, the pair of coefficientsam andbm is chosen
to preserve orthonormality ofwm11 with respect towm

and wm21 . The recursion Eq.~A1! ensures thatwm form
an orthogonal set and that the Rayleigh–Ritz mat
Ti j 5(wi ,Hwj ) is symmetric tridiagonal, with the diagona
and subdiagonal given by the coefficientsam and bm , re-
spectively.

The matrix Ti j can be viewed as the result of the o
thogonal projection of the full matrixĤ onto the subspace
Km . It can be written in matrix form

Tm5Wm
† ĤWm , ~A2!

whereWm is the rectangular matrix whose columns are t
vectorsw1 , . . . ,wm . The eigenvalues ofTm give approxima-
tions to the eigenvalues ofĤ and the corresponding eigen
vectorsy give the coefficients of expansion of the eigenve
tor v of Ĥ in the basis ofwi , v5Wy. Indeed, ifTmy5ly,
then (wi ,ĤWmy2lWmy)50, i.e., the residual vector is or
thogonal toKm .

The recursive relation~A1! provides a great computa
tional advantage to the Lanczos algorithm, making it p
sible to apply this technique to very large matrices, since
required memory does not grow with the number of ite
tions. The problem of loss of global orthogonality due
computer roundoff errors has been extensively studied21 and
is not addressed here.

APPENDIX B: LANCZOS ALGORITHM FOR NON-
HERMITIAN MATRICES

Several existing variations of the Lanczos and Davids
methods are applicable to non-Hermitian eigenva
problems.21 The major difficulty with non-Hermitian matri-
ces is that, in general, no variational principle exists for th
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eigenvalues, and therefore the Ritz procedure is not ap
cable. In addition, the Lanczos recursion Eq.~A1!, which is
based on the Hermiticity ofĤ, does not yield an orthonorma
set of vectorswm when applied to a non-Hermitian matrixL̂.

Lanczos has suggested a non-Hermitian algorithm
partially preserves the advantages of Hermitian Lanczos
cursion Eq.~A1!.21 Instead of building an orthogonal basis
subspaceKm , it constructs a pair of biorthogonal bas
$vm ,wm% that span two Krylov subspacesKm andK m

† of the
operatorsL̂ and L̂†, respectively. The algorithm starts wit
two arbitrary vectorsv0 and w0 , normalized such tha
(v0 ,w0)51, and uses the following recursion relations:

vm115dm11* 21~ L̂vm2amvm2bmvm21!, ~B1!

wm115bm11
21 ~ L̂†wm2am* wm2dmwm21!, ~B2!

the coefficientsam , bm , anddm are chosen at each stepm
such that (vm11 ,wm)5(vm ,wm11)50 and (vm11 ,wm11)
51. As in the case of Hermitian Lanczos algorithm, this
sufficient to ensure the global biorthogonality

~vm ,wn!5dmn . ~B3!

The global biorthogonality becomes an advantage w
combined with a special criterion for the ‘‘best’’ approxim
tion to the eigenvector. Due to the lack of minimum pri
ciple, the Euclidean projection onto a subspace is not
fined. With the biorthogonal basis Eq.~B3!, it is natural to
define an oblique projection intoKm , orthogonal toK m

† .
This is why the algorithm is usually called an oblique Lan
zos algorithm.21

The oblique Lanczos algorithm has a clear compu
tional advantage since the approximations to the eigenva
of L̂ are given as the eigenvalues of the tridiagonal matr

T5S a1 b2

d2 a2 b3

. . .

dm21 am21 bm

dm am

D . ~B4!

Indeed, from Eq.~B2!, the matrix elementsTi j are given by

Ti j 5~wi ,L̂v j !, ~B5!

which in matrix form reads

T5Wm
† L̂Vm . ~B6!

HereVm andWm are the rectangular matrices constructed
vectorsv i and wi , respectively. In analogy with Eq.~A2!,
this equation can be interpreted as the oblique projectio
L̂ onto subspaceKm , orthogonal toK m

† .
The equationTmy5ly leads to (wi ,ĤVmy2lVmy)

50, which means that the residual vector is orthogonal to
vectorswi . Thus, an eigenvalue ofTm gives the approxima-
tion to the eigenvalue ofL̂, and the vectorv5Vy to the
eigenvector ofL̂, subject to the condition that the residu
vector L̂v2lv is orthogonal to all vectorswm . In order to
construct the matrixTm one needs to keep only two pairs
li-

at
e-

n

e-

-

-
es

f

of

ll

vectors in the course of the iteration. On the other hand,
oblique projection does not always exist if the subspaceKm

has at least one vector orthogonal toK m
† . The algorithm

breaks down irreversibly in this case.
OLA has an essential advantage in memory requ

ments with respect to similar algorithms frequently used
non-Hermitian matrices, such as the Arnoldi or Davidso
methods. The Arnoldi algorithm deals with the no
Hermitian problem by building an orthonormal basis inKm

using the Gram–Schmidt orthogonalization procedure

vm115hm11,m
21 S Ĥvm2(

i 51

m

himv i D . ~B7!

The coefficientshmi form the Rayleigh matrix, i.e., the resu
of the projection of the matrixĤ onto the subspaceKm . The
eigenvalues of Rayleigh matrix provide approximations
the eigenvalues ofĤ and the corresponding eigenvecto
give the coefficients in the expansion of the correspond
eigenvectors ofĤ in terms ofvm .

To find the coefficientshim in Eq. ~B7! one needs to
know the scalar products of each new vector with all pre
ously computed vectors. Therefore, the previously compu
vectors must be stored in memory or hard disk, which lim
the matrix size.

For a non-Hermitian case, the best approximationv in
the subspaceKm is defined as the one that gives the small
Euclidean norm of the residual vectorr 5Ĥv2vuĤvu/uvu. In
other words, the best approximation is given as a Euclid
projection of the exact eigenvector onto the Krylov subsp
Km .

The Hermitian Lanczos algorithm is mathematically t
best method for approximating extreme eigenvalues, w
no extra information about the matrixĤ is given besides the
algorithm to compute the matrix-vector products. Wh
some useful information about the internal structure ofĤ is
available, preconditioning techniques can speed up the c
vergence. One of the most widely used methods of this c
is the Davidson algorithm23 that utilizes the information
about the diagonal elements ofĤ, and requires fewer itera
tions when the diagonal elements ofĤ are dominant. The
idea of the Davidson preconditioning is simple. As in t
Lanczos algorithm, the solution of the eigenvalue problem
found by projecting the matrix onto a certain subspaceKm

that expands with the number of iterations. In the Lancz
algorithm, the spaceKm is augmented at each iteration ste
by the residual vectorr m5Ĥwm2lwm . In contrast, the
Davidson algorithm augments the subspaceKm by a different
vector r̃ m , obtained fromr m by multiplying it by a diagonal
matrix (D2lm)21, whereD is the diagonal part ofĤ. The
Davidson algorithm requires the knowledge of the entire
sis of the subspaceKm which imposes heavy memory re
quirements, although it makes the calculations substanti
less time-consuming.

The Davidson algorithm27 and its variations7 are variants
of Arnoldi’s method with diagonal preconditioning. Both Ar
noldi’s and Davidson’s methods suffer from the sam
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memory constraints which make them hard to apply to v
large matrices.

APPENDIX C: IMPLEMENTATION OF THE OBLIQUE
METHOD FOR TDHF

The condition Eq.~B3! only determines the product
f m5bmdm . The absolute values ofbm anddm can be made
equal by the proper choice of the norms ofvm andwm . For
a real matrixL̂ the coefficientsam , bm , anddm are real. The
matrix T is, in general, not symmetric, since some of t
values f m are negative. Let us consider the case when
products f m5bmdm.0. The matrixTm can then be made
symmetric, and therefore its eigenvalues are real.

The symmetric6V form of the TDHF spectrum can b
preserved in the following way: The TDHF operatorL̂ de-
fined in Eq.~3.1! has the property that the result of its actio
on a symmetric matrixj is an antisymmetric matrix and vic
versa. This means that if we choose, for example, two s
metric matrices as starting vectorsv0 andw0 , then all vec-
tors v2 j andw2 j will be symmetric~as matrices! and all the
vectorsv2 j 11 andw2 j 11 will be antisymmetric~as matrices!.
The orthogonality ofvm11 to wm and ofwm11 to vm is thus
guaranteed by symmetry, and therefore allam[0.

If all f m are positive, we obtain a real symmetric trid
agonal matrixT with zero diagonal. By rearranging the ord
of rows and columns of this matrix and writing all the ev
rows and columns first, we can transformT into the form

S 0 Z

Z† 0D , ~C1!

where

Z5S b2

b3 b4

b5 b6

. .

bm21 bm

D , ~C2!

it then follows that the spectrum ofT consists of pairs6Vn .
The method is found to converge exponentially fast to
lowest eigenvalue ofL̂.

Since we expect the approximations to the eigenval
of L̂ to be real, a negativef m constitutes a breakdown. W
found that when the starting vectors are symmetric and e
matrices (v05w0) such breakdowns are rare. Using this in
tial condition, the oblique Lanczos recursion Eq.~B2! com-
putes positivef m step-by-step until a negativef m is encoun-
tered. If this occurs before the accuracy reaches the des
tolerance, the program restarts with a new choice of ini
vectors.

Two different choices of a starting vector were use
Each even attempt starts with a randomv0 . Each odd at-
tempt starts with the diagonal approximation, which in m
lecular orbital representation has one component of the
tor v0 set to 1 and all others set to 0. The component wh
is set to one is chosen based on the diagonal part ofL̂, that is
assumed to be dominant.
y

ll

-
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s
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ed
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.

-
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h

The diagonal part ofL̂ in the molecular-orbital represen
tation is dominant because the major contribution of the tr
sition frequencies comes from the energy differences of fil
and occupied molecular orbitals. Thus the diagonal appro
mation corresponds to the HOMO–LUMO approximatio
for the transition, and gives reasonable guess for the star
vector.

Implementation of the oblique Lanczos recursion E
~B2! requires evaluation of the vector products with bothL̂

andL̂† at each step. This task can be simplified, sinceL̂† can
be expressed in terms ofL̂:

L̂†j[@ L̂@j,r̄ #,r̄ #. ~C3!

Here Eqs.~3.2! and ~3.5! and the Hartree–Fock equatio

@F,r̄ #50 were used. Ifvm and wm are symmetric, then

@wm ,r̄ # is antisymmetric. Hence, one can act withL̂ on the
sumvm1@wm ,r̄ # and recoverL̂vm and L̂@wm ,r̄ # as the an-
tisymmetric and the symmetric parts of the result, resp
tively, then using Eq.~C3! to obtainL̂†wm .
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